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Abstract

Exploration 1is a significant challenge in practical reinforcement
learning (RL), and uncertainty-aware exploration that
incorporates the quantification of epistemic and aleatory
uncertainty has been recognized as an effective exploration
strategy. We propose an algorithm that

clarifies the theoretical connection between aleatory and
epistemic uncertainty;

Junifies aleatory and epistemic uncertainty estimation; and

Jquantifies the combined effect of both uncertainties.

Experimental results demonstrated that our method achieves
substantial improvements in stability and sample efficiency
compared to existing frameworks that only consider aleatory

\uncertainty, epistemic uncertainty, or an additive combination.J

g Distributional RL B

 The agent-environment interaction is modelled with a Markov
Decision Process (MDP):
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Fig.1: Agent-environment interaction modelled as an MDP.

[ Distributional RL learns p (Z T(s,, at)), where:

ZW(Sta at) — Zzozt f)/k_tr(ska ak)

 Distributional Bellman equation:

p(Zg(st, at)) = Tt T ’YP(Zg— (St+1, at+1))
Qp(Z™ (s, a;)) captures aleatory uncertainty.

@ How can we 1incorporate epistemic uncertainty about 6?2
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Proposed Method
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Fig. 2: Steps taken to derive our proposed method. Orange and green shaded areas show
learning of epistemic and aleatory uncertainty.

] Belief-based distributional RL: presents epistemic uncertainty about
@ in the form of a belief distribution b(0) = p(O@ = 0) as a mixture of
k Dirac delta functions:

b(0) = S5 ais(0 —h') ¢ ={(h',a")}},

Belief-based distributional Bellman equation:

p(Zg(St, at)) =1 + ’YP(Z;T— (St4+1,0t41))

1 Unified uncertainty estimation:

* Summarizes b(0) with the feature vector 1m (¢ )consisting of M

moments of @, achieved from i1ts Moment Generating Function
(MGF):

T

p( m(qb)(staat)) = 7¢+7 p( fh(¢—)(8t+1aat+1))

* Learns ¢ using a neural network with the JTD loss function [2]

L(®) = JTD(Zpy () (8t5at), Tt + V() (St+1,At41))

J Composite uncertainty-aware exploration: chooses an action that
rewards high epistemic uncertainty and penalizes high aleatory
uncertainty:

N

ar=arg maxy 1| Zy (¢ (81, a")| = Var(Zme)(st,a’))}

Results

] Tasks: two Atari games and an autonomous vehicle
driving simulator [3] in a highway.

d Baselines: SUNRISE [4], DLTV [5], and IV-DQN [6],
which act based on the epistemic uncertainty, aleatory
uncertainty, and their additive formulation.
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Fig. 3: The cumulative reward
for (a): Atari-Asterix, (b): Atari-
Seaquest, and (¢): Autonomous
vehicle driving.
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